教师姓名:易红亮
办公地点:RAL454
办公电话:024-86386422
传真:024-23906472
电子邮件:hlyi@ral.neu.edu.cn
职称:教授
研究方向:高强度钢铁材料基础理论、应用技术及产业化:高强度汽车钢、汽车钢电阻点焊及激光拼焊、新型轴承钢、超高强韧装甲钢、高应力板簧钢、热作模具钢、大尺寸耐磨钢等
通讯地址:辽宁省沈阳市和平区 东北大学轧制技术及连轧自动化国家重点实验室105信箱
邮政编码:110819
主要从事高强韧汽车钢基础理论和应用技术研究,以第一或通讯作者发表SCI论文51篇,包括金属材料领域顶级期刊Scripta Mater 10篇,担任金属材料英国老牌期刊Mater Sci Technol编委。以第一发明人申请中国发明专利42项(已授权27件),通过PCT途径申请国外同族专利53项(已授权16件)。牵头或参与制定中国汽车工程学会团体标准4项。主持国家自然科学基金优秀青年科学基金、钢铁联合基金重点项目等纵向课题7项,主持与韩国POSCO、华为、鞍钢、本钢、唐钢、承钢、马钢、东风实业、通用汽车、大众汽车、奇瑞汽车等多家企业的合作项目22项。入选2018年苏州工业园区“科技领军人才”、2019年“兴辽英才”青年拔尖人才、2019年辽宁省第十三批“百千万人才工程”百人层次、2020年苏州市“姑苏创新创业领军人才”和2020年江苏省高层次创新创业人才引进计划“双创人才”,获2020年冶金科学技术奖一等奖。
2017年联合通用汽车前研究员熊小川博士和香港大学黄明欣教授,由东北大学科技成果转化技术入股创立了金属材料研发企业“育材堂(苏州)材料科技有限公司”,担任董事长兼技术总裁,旨在推动钢铁材料新技术的产业化应用,并为硕博士的培养提供研究平台。公司先后获得“苏州工业园区科技领军人才领军项目”“苏州市姑苏领军人才创业项目”和“江苏省双创人才创业项目”。已聚集来自国内外顶尖院校、头部企业的科研及工程技术人员40多人,其中博士8人,硕博比例超50%。基于东北大学成果转化入股的汽车高强钢技术,公司通过应用基础研究开发出全球领先的高韧性铝硅镀层热冲压钢,打破了欧洲钢铁巨头长达20多年的材料技术及其激光拼焊技术垄断,已在长城汽车等多家车企实现超万吨应用,引领全球汽车轻量化产业技术进步。除鞍钢集团、宝武集团外,还专利许可欧洲钢铁巨头,在钢铁材料领域实现中国原创技术走向世界。同时,该项技术通过车身轻量化与降低汽车产业供给侧的碳排放,助力实现“碳中和”与“双循环”国家战略。此外,开发的“高应力板簧”技术也帮助国内客车龙头企业宇通客车成功对标丰田竞品车型,解决了宇通客车精品车型多年未解决的“卡脖子”难题。
受教育经历:
2007.03-2010.08:韩国浦项工科大学钢铁学院,计算金属材料实验室,博士
2003.09-2005.07:哈尔滨工业大学材料科学系,材料学,硕士
1998.09-2002.07:哈尔滨工业大学材料工程系,材料成型及控制,本科
研究工作经历:
2017.10-至今:育材堂(苏州)材料科技有限公司,董事长兼技术总裁
2015.01-至今:东北大学轧制及连轧自动化国家重点实验室,教授
2013.01-2014.12:东北大学轧制及连轧自动化国家重点实验室,副教授
2010.08-2012.12:莱芜钢铁集团技术中心先进钢铁材料研究所,副所长、集团公司科学技术委员会委员
2005.07-2007.01:中国汽车工程研究院材料与工艺研究部,助理工程师
代表性产业化成果:
一、全球首次实现2000MPa级汽车钢工业化批量应用
热冲压成形是解决汽车零件强度与成形性的有效方法,但材料的强度与韧性是一对物理本质矛盾,针对热冲压钢抗拉强度超过1500MPa后韧性急剧下降的难题,提出了“纳米析出强化并同时韧化机制”,突破了经典材料科学理论中强化机制降低材料韧性的矛盾。开发出全球第一款抗拉强度超过2000MPa的高韧性热冲压钢,于本钢量产并批量应用于北汽新能源“LIFT”车型。该技术获中国金属学会“国际领先水平”评价,入选《世界金属导报》“2017年世界钢铁工业十大技术要闻”,获冶金科学技术奖一等奖。核心专利(WO2018006490A1)获美国、欧盟、日本授权,许可鞍钢集团,实现万吨级应用。
二、高韧性Al-Si镀层热冲压钢打破国际钢铁巨头专利垄断
在钢板表面预先涂镀一层Al-Si合金完美解决了在热冲压过程中钢板表面发生氧化和脱碳,但现有工业产品面临韧性不足的问题。提出了“Al-Si镀层/钢基体界面间高碳致脆”理论,发明了改善界面韧性的镀层技术,成为唯一满足通用汽车新材料标准中高韧性指标要求的热冲压镀层板。该技术打破欧洲钢铁巨头长达20多年的技术垄断,核心专利(WO2019205698A1)获美国、日本、韩国、加拿大授权,许可全球4家钢铁巨头,搭载于长城汽车等量产车型上,实现万吨级应用,并制定行业标准,获中国汽车工程学会“国际领先水平”评价,入选《世界金属导报》“2022年世界钢铁工业十大技术要闻”。
三、1900MPa级全球最高强度商用车板簧钢量产应用
钢板弹簧是商用车最主要的悬架形式、最核心零部件之一。我国在高端少片簧设计和制造技术方面远远落后并受到技术封锁。针对商用车板簧性能需求及现有产线条件,开发出抗拉强度1900MPa级高许用应力板簧钢,实现板簧零件减重21%,偏频降低至1.4Hz。核心专利(WO2020248459A1)获日本授权,许可红岩板簧,批量应用于宇通多款新型校车,为屈服强度1700MPa级板簧材料全球首次工业应用。入选中国汽车工程学会“年度轻量化标志性技术进展事件”。
负责项目:
1. 高强韧汽车钢,国家自然科学基金优秀青年科学基金,2018.01-2020.12
2. 低密度、高弹性模量、高强韧性钢的理论与技术基础研究,国家自然科学基金钢铁联合基金重点项目,2016.01-2019.12
3. ODS低活化钢薄带铸轧一体化制备研究,国家重点研发计划项目子课题,2019.01-2023.12
4. 超高强度钢汽车零部件成形与应用关键共性技术,国家重点研发计划项目子课题,2016.07-2020.12
5. 高强韧汽车钢,兴辽英才计划,2020.01-2022.12
6. 一种新的齿轮钢的高温临界区渗碳细化晶粒技术及其机理研究,国家自然科学基金青年科学基金,2013.01-2015.12
7. 新型高强韧钢铁材料开发与强韧化机理研究,育材堂(苏州)材料科技有限公司,2023.01-2028.12
8. 超低密度钢技术开发,华为技术有限公司,2020.07-2021.07
9. 新型2300MPa装甲钢热冲压工艺开发及防弹性能机理研究,东风(武汉)实业有限公司,2019.11-2020.12
10. 纳米析出2GPa高韧性热冲压钢的生产技术开发,河钢股份有限公司唐山分公司,2018.01-2019.06
11. 中信-CBMM铌钢研究与开发(R&D)项目合作协议,中信金属宁波能源有限公司,2017.12-2018.12
12. 22MnB5热冲压成型钢技术开发及铝硅板的对比检测合同,河钢股份有限公司唐山分公司,2017.10-2018.12
13. 汽车用钢典型点焊接头组织性能检测及失效机理研究,马鞍山钢铁股份有限公司,2017.07-2018.06
14. Materials design for improving ductility of HPF1800 steels based on Q&DP,韩国POSCO集团,2017.02-2018.01
15. 22MnB5热冲压成型钢技术开发,河钢股份有限公司唐山分公司,2016.12-2018.03
16. 1500MPa级含钒热成型高强钢的开发,河钢股份有限公司承德分公司,2016.12-2017.12
17. 基于连退时效处理工艺下的新型淬火-配分QP980钢设计与开发,本钢板材股份有限公司,2016.05-2018.05
18. 新型双相DP980镀锌板设计与开发,本钢板材股份有限公司,2016.05-2018.05
19. 新型高强韧低密度Delta-TRIP780钢设计与开发,本钢板材股份有限公司,2016.05-2018.05
20. 新型1800MPa级钢板、Al-Si镀层钢板热冲压成形关键工艺及焊接技术开发,东风(武汉)实业有限公司,2015.09-2017.12
21. Effect of partitioning of Mn and Al on mechanical property of middle Mn steel,韩国POSCO集团,2015.07-2016.06
22. 新一代低密度超高强韧性汽车钢设计与开发,鞍钢股份有限公司,2015.01-2016.12
23. PHS1500/PHS1800热冲压成形用钢开发,本钢板材股份有限公司,2015.01-2016.12
24. 基于Q-T&P工艺的新型可镀锌超高强韧热冲压成形钢开发,重庆哈工易成形钢铁科技有限公司,2014.09-2015.08
25. Materials design for improving ductility of HPF steels based on quenching and dynamic partitioning Ⅱ,韩国POSCO集团,2014.08-2015.08
26. 热冲压成形材料高温FLD、材料抗高温氧化性能研究,中国汽车工程研究院, 2013.08-2014.06
27. 热冲压成形材料电阻电焊工艺与性能研究,中国汽车工程研究院股份有限公司,2013.08-2014.01
28. Materials design for improving ductility of HPF steels based on quenching and dynamic partitioning,韩国POSCO集团,2013.06-2015.05
制定标准:
1. T/CSAE 179-2021,汽车用高韧性热镀铝硅合金镀层热冲压钢板技术要求,中国汽车工程学会团体标准,2021-04-12
2. T/CSAE xx
20xx,汽车用2000MPa级热成形钢质量评价指南,中国汽车工程学会团体标准,征求意见中
3. T/CSAE 154-2020,超高强度汽车钢板极限尖冷弯性能试验方法,中国汽车工程学会团体标准,2020-12-31
4. T/CSAE 155-2020,超高强度汽车钢板氢致延迟断裂敏感性U形恒弯曲载荷试验方法,中国汽车工程学会团体标准,2020-12-31
立德树人情况:
教授本科生《金属学与热处理》课程。指导博士生已毕业12名、在读12名,指导硕士生已毕业36名、在读10名。博士毕业生中,3名分别在东北大学、同济大学任教,1名在育材堂公司从事汽车用热冲压钢的研发工作,2名在通用汽车、中国重汽等汽车企业从事材料研发与应用研究,6名在鞍钢、兴澄特钢、华菱钢铁、中天钢铁等各大钢铁企业及中国人民银行沈阳造币公司从事钢铁材料研发及应用工作。硕士毕业生超半数在大众、日产、福特、一汽、长安等各大车企任职工程师。
[1] J.C. Pang, W.F. Yang, G.D. Wang, S.J. Zheng, R.D.K. Misra, H.L. Yi*. Divorced eutectoid transformation in high-Al added steels due to heterogenous nucleation of κ-carbide. Scripta Materialia (IF 6.302), 2022, 209: 114395.
[2] P. Chen, X.W. Li, P.F. Wang, G.D. Wang, J.Y. Guo, R.D. Liu, H.L. Yi*. Partitioning-related microstructure evolution and mechanical behavior in a δ-quenching and partitioning steel. Journal of Materials Research and Technology (IF 6.267), 2022, 17: 1338-1348.
[3] P. Chen, X. Xu, C. Lin, F.M. Yang, J.C. Pang, X.W. Li, H.L. Yi*. Controlling carbide evolution to improve the ductility in high specific Young’s modulus steels. Acta Metallurgica Sinica (English Letters) (IF 3.024), 2022, 35: 1703-1711.
[4] Z.X. Li, Y.L. Chen, L.C. Zhang, R.D.K. Misra, H.L. Yi*. Enhancement of mechanical properties in dissimilar resistance spot welds between galvannealed dual phase and Al–Si coated press hardening steels. ISIJ International (IF 1.864), 2022, 62(11): 2355-2365.
[5] P. Chen, J. Fu, X. Xu, C. Lin, J.C. Pang, X.W. Li, R.D.K. Misra, G.D. Wang, H.L. Yi*. A high specific Young’s modulus steel reinforced by spheroidal kappa-carbide. Journal of Materials Science & Technology (IF 10.319), 2021, 87: 54-59.
[6] D.P. Yang, P.J. Du, D. Wu, H.L. Yi*. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process. Journal of Materials Science & Technology (IF 10.319), 2021, 75: 205-215.
[7] B.G. Wang, G.D. Wang, R.D.K. Misra, H.L. Yi*. Increased hot-formability and grain-refinement by dynamic recrystallization of ferrite in an in situ TiB2 reinforced steel matrix composite. Materials Science and Engineering A (IF 6.044), 2021, 812: 141100.
[8] F.Y. Zhao, P. Chen*, B.Y. Xu, Q. Yu, R.D.K. Misra, G.D. Wang, H.L. Yi*. Martensite transformation of retained austenite with diverse stability and strain partitioning during tensile deformation of a carbide-free bainitic steel. Materials Characterization (IF 4.537), 2021, 179: 111327.
[9] H.L. Cai, J.F. Wang*, D. Wu, H.L. Yi*. A simple methodology to determine fracture strain of press-hardened steels under plane strain bending. Metallurgical and Materials Transactions A (IF 2.726), 2021, 52: 644-654.
[10] B. Deng, Z.Y. Hou, G.D. Wang, H.L. Yi*. Toughness improvement in a novel martensitic stainless steel achieved by quenching–tempering and partitioning. Metallurgical and Materials Transactions A (IF 2.726), 2021, 52: 4852-4864.
[11] M.K. Bai, D.P. Yang, G.D. Wang, J.H. Ryu, K.Y. Lee, R.D.K. Misra, H.L. Yi*. Austenite/ferrite interface movement during intercritical annealing of a medium Mn steel. Materials Science and Technology (IF 2.060), 2021, 37(8): 745-751.
[12] L.Q. Liu, X.C. Xiong*, G.D. Wang, H.L. Yi*. Suppression of austenite grain coarsening by ferrite pinning during pseudo-carburizing treatment. Journal of Materials Engineering and Performance (IF 2.036), 2021, 30: 2381-2388.
[13] H.L. Cai, P. Chen, J.K. Oh, Y.R. Cho, D. Wu, H.L. Yi*. Quenching and flash-partitioning enables austenite stabilization during press-hardening processing. Scripta Materialia (IF 6.302), 2020, 178: 77-81.
[14] D.P. Yang, D. Wu, H.L. Yi*. Comments on “The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels” by J. Han and Y.-K. Lee, Acta Materialia 67 (2014) 354-361. Scripta Materialia (IF 6.302), 2020, 174: 11-13. (评论文章)
[15] X. Xu, B.Y. Xu, P. Chen, R.D. Liu, G.D. Wang, H.L. Yi*. Effect of austenite stability on the hole expansion behavior of δ-TRIP steels. Materials Today Communications (IF 3.662), 2020, 174: 101034.
[16] F.Y. Zhao, P. Chen, B.Y. Xu, Q. Yu, G.D. Wang, H.L. Yi*. A carbide-free bainitic steel with high-ductility by dynamic transformation during coiling process. Materials Science and Technology (IF 2.060), 2020, 36(15): 1704-1711.
[17] 易红亮*, 常智渊, 才贺龙, 杜鹏举, 杨达朋. 热冲压成形钢的强度与塑性及断裂应变. 金属学报 (IF 1.797), 2020, 56(4): 429-443.
[18] Z.R. Hou, T. Opitz, X.C. Xiong, X.M. Zhao, H.L. Yi*. Bake-partitioning in a press-hardening steel. Scripta Materialia (IF 6.302), 2019, 162: 492-496.
[19] D.P. Yang, D. Wu, H.L. Yi*. Reverse transformation from martensite into austenite in a medium-Mn steel. Scripta Materialia (IF 6.302), 2019, 161: 1-5.
[20] P.J. Du, D.P. Yang, M.K. Bai, X.C. Xiong, D. Wu, G.D. Wang, H.L. Yi*. Austenite stabilization by two-step partitioning of manganese and carbon in Mn-TRIP steels. Materials Science and Technology (IF 2.060), 2019, 35: 2084-2091.
[21] 王宝刚,易红亮*,王国栋,骆智超,黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构. 金属学报 (IF 1.797), 2019, 55(1): 133-140.
[22] P. Chen, G.D. Wang, A.V. Ceguerra, A.J. Breen, S.P. Ringer, X.C. Xiong, Q. Lue, J.F. Wang, H.L. Yi*. Yield strength enhancement by carbon trapping in ferrite of the quenching and partitioning steel. Metallurgical and Materials Transactions A (IF 2.726), 2018, 49(1): 235-240.
[23] H.L. Yi*, L. Sun, X.C. Xiong. Challenges in the formability of the next generation of automotive steel sheets. Materials Science and Technology (IF 2.060), 2018, 34(9): 1112-1117.
[24] Z.R. Hou, X.M. Zhao, W. Zhang, H.L. Liu, H.L. Yi*. A medium manganese steel designed for water quenching and partitioning. Materials Science and Technology (IF 2.060), 2018, 34(10): 1168-1175.
[25] J.C. Pang, B.Y. Xu, G.D. Wang, Q. Lu, J.F. Wang, H.L. Yi*. Effect of silicon and aluminum in ferrite on tensile and impact properties. Materials Science and Technology (IF 2.060), 2017, 33(15): 1806-1810.
[26] P. Chen, X.C. Xiong, G.D. Wang, H.L. Yi*. The origin of the brittleness of high aluminum pearlite and the method for improving ductility. Scripta Materialia (IF 6.302), 2016, 124: 42-46.
[27] P. Chen, G.D. Wang, X.C. Xiong, H.L. Yi*. Abnormal expansion due to pearlite-to-austenite transformation in high aluminium-added steels. Materials Science and Technology (IF 2.060), 2016, 32: 1678-1682.
[28] X.C. Xiong, L. Sun, J.F. Wang, X.Y. Jin, L. Wang, B.Y. Xu, P. Chen, G.D. Wang, H.L. Yi*. Properties assessment of the first industrial coils of low-density duplex δ-TRIP steel. Materials Science and Technology (IF 2.060), 2016, 32: 1403-1408.
[29] M.K. Bai, J.C. Pang, G.D. Wang, H.L. Yi*. Martensitic transformation cracking in high carbon steels for bearings. Materials Science and Technology (IF 2.060), 2016, 32: 1179-1183. (特邀论文 “Recent developments in bearing steels”)
[30] M.X. Huang*, B.B. He, X. Wang, H.L. Yi*. Interfacial plasticity of a TiB2-reinforced steel matrix composite fabricated by eutectic solidification. Scripta Materialia (IF 6.302), 2015, 99: 13-16.
[31] H.L. Yi*. Review on δ-transformation-induced plasticity (trip) steels with low density: The concept and current progress. JOM, 2014, 66(9): 1759-1769. (特邀论文: “Processing-Structure-Property Correlation of Low Density Steels”)
[32] H.L. Yi*, P. Chen, H.K.D.H. Bhadeshia. Optimising the morphology and stability of retained austenite in a δ-TRIP steel. Metallurgical and Materials Transactions A (IF 2.762), 2014, 45(8): 3512-3518.
[33] H.L. Yi*, H.L. Cai, Z.Y. Hou, J.C. Pang, D. Wu, G.D. Wang. Low density steel 1.2C-1.5Cr-5Al designed for bearings. Materials Science and Technology (IF 2.060), 2014, 30(9): 1045-1049.
[34] H.L. Yi*, P. Chen, Z.Y. Hou, N. Hong, H.L. Cai, Y.B. Xu, D. Wu, G.D. Wang. A novel design: Partitioning achieved by quenching and tempering (Q–T & P) in an aluminium-added low-density steel. Scripta Materialia (IF 6.302), 2013, 68(6): 370-374. (特邀论文: “Low-Density Steels”)
[35] H.L. Yi*, Z.Y. Hou, Y.B. Xu, D. Wu, G.D. Wang. Acceleration of spheroidization in eutectoid steels by the addition of aluminum. Scripta Materialia (IF 6.302), 2012, 67: 645-648.
[36] H.L. Yi, J.H. Ryu, H.K.D.H. Bhadeshia*, H.W. Yen, J.R. Yang. Low-alloy duplex, directly-quenched TRIP-steel. Scripta Materialia (IF 6.302), 2011, 65(7): 604-607.
[37] H.L. Yi, K.Y. Lee, H.K.D.H. Bhadeshia*. Mechanical stabilisation phenomenon of retained austenite in δ-TRIP steel. Materials Science & Engineering A (IF 6.044), 2011, 528: 5900-5903.
[38] H.L. Yi, K.Y. Lee, H.K.D.H. Bhadeshia*. Extraordinary ductility in al-bearing delta-TRIP steel. Proceedings of the Royal Society A (IF 3.213), 2011, 467: 234-243. (被该杂志评为2011年度引用排名第二的文章)
[39] H.L. Yi, K.Y. Lee, H.K.D.H. Bhadeshia*. Stabilisation of ferrite in hot rolled δ-TRIP steel. Materials Science &Technology (IF 2.060), 2011, 27: 525-529.
[40] H.L. Yi*, S. Ghosh, H.K.D.H. Bhadeshia. Dual-phase hot-press forming alloy. Materials Science & Engineering A (IF 6.044), 2010, 527: 4870-4874.
[41] H.L. Yi*. Full pearlite obtained by slow cooling in medium carbon steel. Materials Science & Engineering A (IF 6.044), 2010, 527: 7600-7604.
[42] H.L. Yi, K.Y. Lee, H.K.D.H. Bhadeshia*. Spot weldability of δ-TRIP steel containing 0.4 wt% C. Science and Technology of Welding & Joining (IF 4.114), 2010, 15(7): 619-624.
[43] H.L. Yi, S.K. Ghosh, W.J. Liu, K.Y. Lee, H.K.D.H. Bhadeshia*. Non-equilibrium solidification and ferrite in δ-TRIP steel. Materials Science & Technology (IF 2.060), 2010, 26: 817-823.